skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Planning long-horizon robot manipulation requires making discrete decisions about which objects to interact with and continuous decisions about how to interact with them. A robot planner must select grasps, placements, and motions that are feasible and safe. This class of problems falls under Task and Motion Planning (TAMP) and poses significant computational challenges in terms of algorithm runtime and solution quality, particularly when the solution space is highly constrained. To address these challenges, we propose a new bilevel TAMP algorithm that leverages GPU parallelism to efficiently explore thousands of candidate continuous solutions simultaneously. Our approach uses GPU parallelism to sample an initial batch of solution seeds for a plan skeleton and to apply differentiable optimization on this batch to satisfy plan constraints and minimize solution cost with respect to soft objectives. We demonstrate that our algorithm can effectively solve highly constrained problems with non-convex constraints in just seconds, substantially outperforming serial TAMP approaches, and validate our approach on multiple realworld robots. 
    more » « less
    Free, publicly-accessible full text available June 21, 2026
  2. Self-supervised and language-supervised image models contain rich knowledge of the world that is important for generalization. Many robotic tasks, however, require a detailed understanding of 3D geometry, which is often lacking in 2D image features. This work bridges this 2D-to-3D gap for robotic manip- ulation by leveraging distilled feature fields to combine accurate 3D geometry with rich semantics from 2D foundation models. We present a few-shot learning method for 6-DOF grasping and placing that harnesses these strong spatial and semantic priors to achieve in-the-wild generalization to unseen objects. Using fea- tures distilled from a vision-language model, CLIP, we present a way to designate novel objects for manipulation via free-text natural language, and demonstrate its ability to generalize to unseen expressions and novel categories of objects. Project website: https://f3rm.csail.mit.edu 
    more » « less